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ABSTRACT

In this paper, we investigate and propose a novel prediction
model for lossless image coding in which the optimal cor-
related prediction for block of pixels are simultaneously ob-
tained in the sense of the least code length. It not only utilizes
the spatial statistical correlation for the optimal prediction di-
rectly based on 2-D contexts, but also formulates the data-
driven structural interdependencies to make the prediction er-
ror coherent with the underlying probability distribution for
coding. Besides the discriminative adaptive pixel-wise pre-
diction, the Markov network is adaptively derived to maintain
the coherence of prediction in the blocks and seek the con-
current optimization of set of prediction by relating the loss
function to actual code length. The prediction error is shown
to be asymptotically upper bounded by the training error un-
der the decomposable loss function. For validation, we apply
the proposed model into lossless image coding and experi-
mental results show that the proposed scheme outperforms
the best prediction scheme reported.

Index Terms— Structured set prediction model, max-
margin Markov network, lossless image coding

1. INTRODUCTION

Advances in lossless image coding can be achieved through
either 1-D sequential data compression or 2-D context pre-
dictive coding, since the concept of context is constructed
for universal sequential prediction by Rissanen [1]. Recently,
context-based adaptive linear predictors have witnessed sig-
nificant improvements. Among which, the state-of-the-art
include gradient adjusted predictor (GAP) utilized in the
context-based adaptive lossless image coder (CALIC [2]) and
median edge detector (MED) adopted in the low-complexity
lossless compression for images (LOCO-I [3]). GAP de-
termines the active predictor for the current pixel based on
its neighboring pixels’ gradients. While MED adaptively
chooses the median of the neighboring encoded pixels for the
current pixel. However, the stationary linear predictors are
not eligible in practice, as most natural images are far from
being stationary.

Recognizing the nonstationarity of natural images, a class
of least-square (LS) autoregression based predictors are de-

veloped. First proposed in [4], LS-based adaptation adapt it-
self in a pixel-by-pixel basis and improved the predictive per-
formance by seeking the adaptive optimization of the predic-
tion coefficients based on the sequentialized context. As a sig-
nificant alternative, the edge-directed prediction (EDP) in [5]
figured out the edge-directed property of LS-based adaptation
in the edge areas and proposed to initiate the LS-based adapta-
tion only when the prediction error exceeds the predetermined
threshold. Inspired by the edge-directed property, a switch-
ing predictor structure for lossless coding was proposed in [6]
for areas with distinct local statistics: run-length coding for
piecewise smooth areas and LS-based adaptation for the edge
areas. The further improvements of the LS-based adaptation
are also considered, which mainly lie on two aspects: weight-
ing for obtained contexts by readjusting the eigenvalues of
the convariance matrix [7] and adaptive sequentialization with
minimum description length (MDL) [8]. However, the se-
quentialization destructs the morphology of 2-D context re-
gion and obscures inherent statistical correlation among the
pixels in the correlated region. Such that spatial structures
cannot be fully exploited to regularize the predictions.

As an alternative, spatial structures have been considered
in the probabilistic modeling of the encoded pixels to com-
pensate the pixel-wise prediction [9]. Furthermore, two-pass
prediction schemes were proposed to enable mixture distri-
bution and global image analysis beyond one-pass predic-
tion. Typically, TMW used a blending of multiple probability
distributions and a correlation-based segmentation to achieve
higher coding performance for most natural images [10]. Fur-
thermore, Matsuda et al. [11] proposed a generalized Gaus-
sian model for image prediction error and categorized im-
age blocks with variable size in terms of their variance, and
achieves the best compression performance with relatively
high computational complexity. However, such generative
methods are restrictive because the smooth of prediction er-
ror is isolated by considering the variance of each error rather
than directly consider the interdependencies among sets of
prediction error. Moreover the two-pass predictive schemes
require to transmit side information about the predictor.

The contribution of this paper is twofold. First, the dis-
criminative learning-based model is proposed to directly mea-
sure and evaluate the inherent statistical correlation between
2-D contexts and their corresponding prediction for optimal



individual pixel-wise prediction. Contrary to LS-based adap-
tation, the proposed model maintains the inherent statistical
correlation by avoiding sequentilization and directly construct
the mapping between the contexts and obtained prediction.
The model parameters are learned off-line by discriminating
the actual pixel value from the others to the maximal margin.
Second, the data-driven structural interdependencies are for-
mulated to regulate the individual pixel-wise prediction in a
correlated region. Distinguished from the restrictive genera-
tive methods concerning the variance of prediction error, the
formulation is proposed to maintain the coherence of predic-
tion in the region and adaptively derived from the varying lo-
cal statistics. The series of estimates are constrained with the
structural interdependencies derived from the current region
of pixels and optimized to minimize the joint code length.

To validate the efficacy of the predictor with the proposed
model, we apply it into lossless image coding. The practical
coder is block-based and the optimal prediction of each block
is obtained with the sequential minimal optimization over the
generated junction tree. It should be stressed that only one-
pass coding is needed as the proposed predictor is causal and
performs only based on past encoded samples. The proposed
lossless technique commits, an average 1.05 percent shorter
code length than the optimal predictor in [11].

The rest of the paper is organized as follows. In Section
2, we formulate the structured set prediction model for loss-
less image coding by deriving decomposable loss function
and upper bound for prediction errors, and find the optimal
solution over the generated Markov network. The practical
coder based on the structured set prediction model is proposed
in Section 3, where the general framework is also described.
Experimental results for both oscillatory patterns from nat-
ural images and common grayscale test images are given in
Section 4. Finally, we draw the conclusion in Section 5.

2. FORMULATION OF STRUCTURED SET
PREDICTION MODEL

2.1. Problem Formulation

The structured set prediction model simultaneously consid-
ers the inherent statistical correlation for individual context-
based prediction and the structural interdependencies for set
of prediction in local regions. Consequently, the constrained
concurrent training and prediction are performed for the pro-
posed model, where the enforced constraints are derived from
the local structural interdependencies and utilized to regulate
the set of prediction. For the application into lossless image
coding, the set prediction is defined as the joint prediction for
block of pixels with fixed size. In view of the fact that actual
code length is based on the underlying probability distribu-
tion for prediction error, the loss function is designed to relate
such practical measurement. Denote S = {xi,yi}Ni=1 the col-
lected set of training data, where yi is the ith labeled block of

pixels for predicting and xi is the ith observed contexts for yi.
The max-margin individual prediction is conducted under the
class of feature functions {fi}, each of which is constructed as
a basis function to distinguish the various context-based spa-
tial statistics: fi (y) = P (y|xi) Consequently, the prediction
are made by combining the corresponding feature function
representing various local statistics. In training, the concur-
rent optimization for set of prediction in the local region is
sought to minimize the practical measurements derived from
the well-defined loss function and the weighting vector w is
tuned to fit. In subsequent prediction, the joint prediction is
made by combining a series of feature functions {fi} in the
spanned space F with the learned normal vector w. The min-
max formulation of the max-margin Markov network is pro-
posed by considering the constraints derived from the struc-
tural interdependencies among the pixels for predicting.

min
1

2
∥w∥2 + C

∑
i

ξi

s.t. wT fi (yi) + ξi ≥ max
y

(
wT fi (y) + L (yi,y)

)
∀i
(1)

In Eq. (1), the weighting vector w is the normal vector per-
pendicular to the hyperplane of the feature functions, and {ξi}
is the slack vector which allows for the violations of the con-
straints at a cost proportional to {ξi}.

The pixels for predicting are naturally correlated with
their spatial relationship, as shown in Fig. 1. When denote
y =

{
y(i)

}M

i=1
the collection of M pixels for predicting, the

2-D Markov random field is constructed accordingly where
each edge clique contains the two neighboring pixels connect-
ing by the edge.

2.2. Loss Function

Since there exists strong connection between the loss-scaled
margin and the expected risk of the learned model, we are
to make a study for the loss function in the loss-augmented
inference. For the M -ary estimated output ŷ, its approxima-
tion error is supposed to be measured by the loss function
L (ŷ,y).

L (ŷ,y) =
∑
i

ℓi

(
ŷ(i) − y(i)

)
(2)

where ℓi (·) is the loss function for the ith component ŷ(i) of
estimation ŷ. Let ϵi = ŷ(i) − y(i) be the ith error led by the
estimate ŷ(i), and denote σ2 the variance derived by the M
errors {ϵi}Mi=1. Commonly, the probability density function
for prediction errors is modeled by the Gaussian function with
a variance of σ2. The proposed loss function is required not
only to indicate the number of pixels predicted incorrectly but
to measure the exact code length led by the prediction errors.

ℓi(ϵi) = log2
√
2πσ2 +

ϵ2i
2σ2

log2 e (3)
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Fig. 1. Graphical model for the structured prediction model

where e is the base of the natural logarithms. Consequently,
the solutions to the loss-augmented optimization problem will
minimize the practical code length as defined by the loss func-
tion L (ŷ,y). According to the Markovian property of the
grid-like Markov network shown in Fig. 1, the cumulative
probability distribution of the correlated pixels is the produc-
tion of all node and edge cliques.

According to D-separation theorem, we obtain

p (y) =
∏

1≤i≤M

∏
j>i,j∈ne{i}

p
(
y(j)|y(i)

)
= p

(
y(1)

)
·
∏
C

ψC (yC)

where {yne(i)} = {y(j)|j > i, j ∈ ne (i)} includes all neigh-
boring nodes y(j) locating downside or rightside to y, and
ψC (·) is the potential function for the edge clique C. Refer-
ring to Eq. (3), the distribution over the states {yi} is hence
decomposable over the edges in the graphical model. Such
that the log-Gaussian loss function under the probabilistic dis-
tribution is decomposable over the cliques in the graphical
model.

2.3. Upper Bound for the Prediction Errors

In this section, we show that the upper bound for predic-
tion error is asymptotically equivalent to the training error.
Such upper bound allows us to relate the error on the training
data to the prediction error. Consequently, when the weight-
ing vector w has been well-tuned to fit the training data, the
prediction error will not diverge owing to the consistency be-
tween training and prediction.

Extending the average error L (w · f ,y) for the blocks of
M pixels to measure with the γ-margin hypersphere, we de-
fine a γ-margin per-label loss.

Lγ (w · f ,y) = sup
y′:∥w·f(y)−w·f(y′)∥≤γL(y,y′)

1

M
L (y,y′) .

The γ-margin per-label loss Lγ (w · f ,y) picks from all
proper y′ (satisfies wT f (x,y) ≤ wT f (x,y′)) that maxi-
mizes the log-Gaussian measure from y in a γL (y,y′) wider
hypersphere. It is actually closed to the loss in the proposed
min-max formulation.

We can now show that the prediction and training is
asymptotically consistent, which means that the upper bound
for prediction error will converge to the training error with
sufficient sampling.

Proposition 1. For the trained normal vector w and arbi-
trary constant η > 0, the predictive error is asymptotically
equivalent to the one obtained over the training data with
probability at least 1− e−η .

The mean error of prediction and training is related as

EXL (w · f ,y) ≤ ESL
γ (w · f ,y) + o

(
logN

N

)
(4)

In Eq. (4), the first term bounds the training error based on
w. The low training error ESL

γ (w · f ,y) can be achieved
with the well-tuned weighting vector w. Such that the per-
formance of the prediction model can be assured with the
low error ESL

γ (w · f ,y) and high margin γ. The second
term is the excess loss corresponding to the complexity of
the predictor, which vanishes with the growth of sample size
N . Thus the expected predictive per-label error is asymptot-
ically equivalent to the γ-margin per-label error. Proposition
1 ensures the predictive performance by relating the theoreti-
cal upper bound for prediction to the tunable one for training.
Since the loss derived by the log-Gaussian loss function is
equivalent to the actual coding length led by the predictive
error the coding cost led by the structured conditional predic-
tion asymptotically approaches the training results with the
sample size growth.

2.4. Solving Structured Set Prediction Model

Since the standard quadratic programming (QP) for Eq. (1) is
often prohibitive in the structured set prediction model even
for small training sets. To solve Eq. (1), we obtain its dual
to use the coordinate dual ascent method analogous to the se-
quential minimal optimization (SMO). SMO breaks the op-
timization problem into a series of small QP problems and
takes an ascent step that modifies the least number of vari-
ables.{

max [vi (y
′)− vi (y

′′)] δ − 1

2
C∥fi (y′)− fi (y

′′) ∥2δ2

s.t.αi (y) + δ ≥ 0, αi (y
′′)− δ ≥ 0

(5)
where vi (y) = w · fi (y) + L (yi,y). and fi (y) ={∑K

k=1 βjx
(j)
ik

}M

j=1
. The minimization process chooses the

SMO pairs with respect to the KKT conditions. The KKT
conditions are the sufficient and necessary criteria for opti-
mality of the dual solution, which commits the certain locality
for each example.

To maintain the spatial structures, we build the Markov
Random Field for the αi and vi in each block, and accordingly
calculate the marginal for each component in the random field



to decide the SMO pairs. Since the generated Markov Ran-
dom Field is not a chordal graph, it is firstly triangulated into
a corresponding junction tree for cliques which can be ob-
tained. Since the junction tree is not unique for each graphical
model, we choose the chain-like junction tree for simplicity in
the training and inference, and denote {Ji} the nodes in the
junction tree. When selecting the SMO pair, the states of la-
bels in certain junction Ji are fixed, based on which the states
in the other junctions are inferred. The SMO pair is chosen
by finding the pairs of the series of states which maximize
the margin. For each junction Ji, its potential is obtained by
cumulating the potentials of its cliques.

ψ (Ji) =
∏
C∈Ji

ψC (xC ,yC) (6)

The inference of the states in the junctions is made by
passing the messages between the neighboring junctions. For
each junction to predict in the grid, its most probable state and
corresponding largest marginal probability are sought with
the max-sum algorithm. The maximum marginal probabil-
ity and the most probable state for junction Jp can be cal-
culated. Consequently, the potential for each junction can
be maximized. The maximization process is required to tra-
verse over all the ∥A∥∥Jp∥ states of the junction Jp for the
alleged alphabet A, which is too large even for the grayscale
natural images. Since all the cliques in the graphical model
are derived from the probability distribution condition on the
states yi, the product

∏
and the maximization max can be ex-

changed. Therefore, the maximization process in each junc-
tion can be implemented by combining the maximized results
of all its cliques. With the max-sum algorithm, the most prob-
able states for cliques in all the junctions can be obtained as
the candidate for sequential minimal optimization. The de-
tailed The SMO process and KKT conditions for SMO pairs
can refer to [12].

3. STRUCTURED SET PREDICTION MODEL
BASED CODER

As shown in Fig. 2, we describe the practical lossless image
coder where the estimates of the blocks of pixels are obtained
from the structured set prediction model. The coding pro-
cess is composed of two steps: training and prediction. The
training step is based on the labeled data sampled from the
natural images and is off-line. The mapping on the directions
of blocks is built among the observation blocks and the label
block for predicting. The direction of each block is associ-
ated with its pixels, which can be in terms of the statistics
such as gradient orientation. It is viewed as the feature for
fitting local statistics since the prediction based on the ob-
servations depends on the local motion directions. After the
sampled data are categorized according to the orientation, it is
easy to suppose that prediction in each class is characterized
with one linear predictor. The parameters for the predictor
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Fig. 2. Illustrative framework for lossless image coder based
on structured set prediction model

are learned based on the classified sample data by building
the max-margin Markov network. Both the mapping for clas-
sification and the learned parameters for prediction obtained
from the off-line training are served as the priors for the next-
step prediction. The constructed a priori distribution for pre-
diction is the maximum posterior estimation for the distribu-
tion which the training data imply.

In the prediction step, we take the blocks that have been
predicted as observations and classify the blocks for predict-
ing according to their orientations. Then the estimation of
all the pixels in each block is made by finding the joint max-
margin estimation evaluated with the loss function. Here the
minimization under the loss function will obtain the least code
length under the Gaussian distributed entropy coder. Further-
more, to suppress the approximation errors led by the over-
fitting and the inconsistency with the training data, the online
updates for predictors are proposed based on the errors ob-
tained after the predictions.

The encoding engine has been developed in the range
coder adopted by MRP. The prediction errors obtained by the
structured set prediction model are combined with the min-
imum rate predictor, serving as an enhancement of the first
loop prediction errors. In turn, the achieved prediction errors
from the proposed predictor are used for the subsequent it-
erative optimization of the second loop. With the suppress
of the errors around the oscillatory and texture regions, more
efficient prediction is made.

3.1. Orientation for Blocks of Images

In the training step, we find the mapping function for the ori-
entations of the blocks to predict and its neighbors. We sam-
ple the orientations from the blocks of observations along the
boundary of the current predictive region at a pixel step. The
orientation is measured by the Gaussian PSF G based gradi-
ent energy d of the blocks: d = ∥dx∥+ ∥dy∥ = ∥∂G

∂x · I∥2 +
∥∂G

∂y · I∥2 The orientation θ is obtained and categorized into
16 class at a gap of π/16, and we determine an orientation for



the block by the variance with neural network with sigmoid
function δi (θi) = 1

1+e−θi
For each training data, the weight

wdi is updated by ∆wdi = 2η(θ − θi)δi (1− δi) with the
learning rate η.

3.2. Structured Set Prediction Model

The max-margin Markov network is established according to
the graphical model in Fig. 1. The observation {x,y} is ob-
tained from the neighboring blocks that have been predicted,
where x is the context for prediction in the training data and
y the known prediction. The training process is conducted
according to Eq. (1), where {αi (·)} and {vi (·)} are obtained
conditioning on the training data {x,y}. The learning param-
eter is set to 50 (equivalent to learning rate as 0.02). The nor-
mal vector w is iteratively learned with the sequential maxi-
mization optimization. In the prediction step, the prediction is
obtained with the normal vector w. To achieve the most prob-
able prediction, the max-sum algorithm is conducted over the
graphical model. The structured set prediction model infers
the values of all the pixels simultaneously with the constraints
characterized with the normal vector w. Given L cliques with
alphabet size ∥y∥ in each block, the computational complex-
ity of the max-sum algorithm is O

(
L∥y∥2

)
, which means

that the complexity is linear with the number of cliques.

3.3. Online Update

When the error ϵi for pixel xi is obtained, we can update the
weight vector by combining the observations in prediction.
The reason for online update is that the prediction based on
the training data would lead to the statistics minimizing the
sample error in the data, and could not be optimized to sup-
press the approximation error led by the specific local feature
of individual block. To asymptotically achieve the optimal
prediction, we perform the online update after each predic-
tion. In this step, the update for weight wi of observation xi
is derived: ∆wi =

dℓi(ϵi)
dwi

· ϵi. Such that the normal vector w
is readjusted along the direction that minimizing the error in
the sense of the log-Gaussian loss function.

4. EXPERIMENTAL RESULTS

In this section, we present the experimental results and make
comparison with the other predictors for validation. The size
of pixels for simultaneous prediction is fixed to the 4 × 4
block with M = 16. Corresponding to the boundary pix-
els neighboring leftside or upside to the blocks for prediction,
the structural feature functions {fi} serving as the contexts
are set to 13 groups with each feature function indicating the
relation of one context and one pixel for predicting in each
group. A set of nine common grayscale test images are val-
idated by comparing with the state-of-the-art lossless image
coder MRP, TMW, and etc.

For validation, we compare the proposed structured set
prediction-based-coder with the existing benchmark in loss-
less image coding. Their performance for lossless image cod-
ing is presented in Table 1. For generality of the validation,
the selected test images span a wide rage in bit rates. It is wit-
nessed that the proposed model is competitive as it achieves
shorter code length than all the other coders. In a note of
practical interest, the proposed method outperforms MRP, the
best predictor reported, and witnesses an approximately 10%
and 18% enhancement in bit rates over the JPEG 2000 loss-
less mode and JPEG-LS standard on average. This work im-
proves the predictive performance of natural images with the
structured set prediction model. Fig. 3(a)-(c) show the resid-
ual maps obtained from the proposed structured set predic-
tion model, minimum rate predictor and edge directed predic-
tor. The fact implies that the proposed model help to improve
the predictive performance around oscillatory regions, which
are often hard to deal in the individual context based adap-
tive methods. The binary map indicates where the proposed
model is initiated when compared with MRP. It also validates
that the proposed model is more efficient around the texture
and oscillatory regions.

According to the implementation described in Section 3,
the proposed coder based on the structured set prediction
model commits the overheads indicating the model is initi-
ated. For the sake of the fixed block size 4× 4, the proposed
coder has to consume more bits for identifying the block es-
pecially when the structural interdependencies is coherent for
the blocks with larger size. However, the latest version of
MRP optimizes for the supporting regions with variable block
size ranging from 32× 32 to 4× 4, which helps reducing the
cost in the description of the class of pixels. The proposed
coder noticeably outperforms MRP when the block size in
MRP is also fixed to 4 × 4. As shown in Table 2, the margin
between the proposed coder and MRP with fixed block size
is 3%. Such that there is still space for exploring the code
cost of natural images when the proposed coder is designed
to adapt the varying block size.

5. CONCLUSION

In this paper, the structured prediction model is proposed for
the lossless image coding. The proposed model makes the
prediction with multiple max margin estimation for each pixel
in a correlated region, and subsequently, exploits the decom-
position and combinatorial structure of the local prediction
task. Evaluated with the well-defined loss function, the max
margin Markov network is proposed for the pixel-wise pre-
diction and the relevant parameters are trained. The predic-
tion is bound to be asymptotically consistent with the training
results with the decomposable loss function and the sufficient
samples. For the practical coder, the training process gives
the prior parameters for the prediction and the parameters are
updated simultaneously with the progress of prediction. Ex-



(a) Proposed (b) MRP (c) EDP (d) Pixels predicted with the pro-
posed model

Fig. 3. Prediction error maps for test image ”Lena” respectively obtained the proposed algorithm, the minimum rate predictor
(MRP) and the edge directed predictor (EDP).

Table 1. Comparison with Existing Lossless Image Coders (bpp) for test image set 1
Image(size) Proposed MRP BMF TMW Glicbawls CALICa JPEG-LS JPEG 2000

Airplane(512×512) 3.539 3.591 3.602 3.601 3.668 3.743 3.817 4.013
Baboon(512×512) 5.648 5.663 5.714 5.738 5.666 5.875 6.037 6.107
Balloon(720×576) 2.526 2.579 2.649 2.649 2.640 2.825 2.904 3.031

Barb(720×576) 3.797 3.815 3.959 4.084 3.916 4.413 4.691 4.600
Barb2(720×576) 4.193 4.216 4.276 4.378 4.318 4.530 4.686 4.789
Couple(256×256) 3.349 3.388 3.448 3.446 3.543 3.609 3.699 3.915
Goldhill(720×576) 4.192 4.207 4.238 4.266 4.276 4.394 4.477 4.603

Lena(512×512) 3.871 3.889 3.929 3.908 3.901 4.102 4.238 4.303
Peppers(512×512) 4.166 4.199 4.241 4.251 4.246 4.421 4.513 4.629

perimental results show that its performance on oscillatory
patterns is superior, where the regular feature can be caught
by the training process.
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